Cartesian Products of Family of Real Linear Spaces

نویسندگان

  • Hiroyuki Okazaki
  • Noboru Endou
  • Yasunari Shidama
چکیده

In this article we introduced the isomorphism mapping between cartesian products of family of linear spaces [4]. Those products had been formalized by two different ways, i.e., the way using the functor [:X,Y:] and ones using the functor " product ". By the same way, the isomorphism mapping was defined between Cartesian products of family of linear normed spaces also. The notation and terminology used in this paper are introduced in the following

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cartesian-closedness of the category of $L$-fuzzy Q-convergence spaces

The definition of $L$-fuzzy Q-convergence spaces is presented by Pang and Fang in 2011. However, Cartesian-closedness of the category of $L$-fuzzy Q-convergence spaces is not investigated. This paper focuses on Cartesian-closedness of the category of $L$-fuzzy Q-convergence spaces, and it is shown that  the category $L$-$mathbf{QFCS}$ of $L$-fuzzy Q-convergence spaces is Cartesian-closed.

متن کامل

THE CATEGORY OF T-CONVERGENCE SPACES AND ITS CARTESIAN-CLOSEDNESS

In this paper, we define a kind of lattice-valued convergence spaces based on the notion of $top$-filters, namely $top$-convergence spaces, and show the category of $top$-convergence spaces is Cartesian-closed. Further, in the lattice valued context of a complete $MV$-algebra, a close relation between the category of$top$-convergence spaces and that of strong $L$-topological spaces is establish...

متن کامل

m at h . FA ] 2 6 O ct 1 99 3 ON COMPLEMENTED SUBSPACES OF SUMS AND PRODUCTS OF BANACH SPACES

It is proved that there exist complemented subspaces of countable topo-logical products (locally convex direct sums) of Banach spaces which cannot be represented as topological products (locally convex direct sums) of Banach spaces The problem of description of complemented subspaces of a given locally convex space is one of the general problems of structure theory of locally convex spaces. In ...

متن کامل

Affinization of Segre products of partial linear spaces

Hyperplanes and hyperplane complements in the Segre product of partial linear spaces are investigated. The parallelism of such a complement is characterized in terms of the point-line incidence. Assumptions, under which the automorphisms of the complement are the restrictions of the automorphisms of the ambient space, are given. An affine covering for the Segre product of Veblenian gamma spaces...

متن کامل

Strictly singular operators and isomorphisms of Cartesian products of power series spaces

V. P. Zahariuta, in 1973, used the theory of Fredholm operators to develop a method to classify Cartesian products of locally convex spaces. In this work we modify his method to study the isomorphic classification of Cartesian products of the kind E0…a† E1 …b† where 1 % p;q < 1 , p ˆj q, a ˆ …an† nˆ1 and b ˆ …bn† nˆ1 are sequences of positive numbers and E0…a†, E1 …b† are respectively `p-finite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Formalized Mathematics

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2011